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Abstract-This paper focuses on the buckling of cylindrical shells with small thickness variations.
Two important cases of thickness variation pattern are considered. Asymptotic formulas up to the
second order of the thickness variation parameter e are derived by the combination of the per
turbation and weighted residual methods. The expressions obtained in this study reduce to Koiter's
formulas, when only the first-order term of the thickness variation parameter is retained in the
analysis. Results from the asymptotic formulas are compared with those obtained through the
purely numerical techniques of the finite difference method and the shooting method.

l. INTRODUCTION

There is a vast literature devoted to buckling ofcylindrical shells ofconstant thickness. The
problem ofthe influence of thickness variation on the buckling load has not gained attention,
and remains open even today, To the best of our knowledge, the first work on the effect of
thickness variation on the buckling of shells was undertaken by the present authors (Elisha
koff et al., 1992). Both the thickness variation and the initial geometric imperfections
were considered axisymmetrical. The solution was composed of two terms; the first being
associated with the shell ofconstant thickness, whereas the second incorporated the effects
of the thickness variation. The former coincided with Koiter's analytical investigation
(1992) for constant thickness shells with axisymmetric imperfection, whereas the latter term
was derived numerically using the shooting method. In Koiter (1963), an analytical formula
has been derived for the buckling load of a perfect, non-uniform cylindrical shelL The
attendant derivation through utilizing the energy method was included in Elishakoff and
Charmats (1977). Elishakoff and Charmats supported the central result of the combined
theoretical-numerical investigation that the effect of thickness variation becomes remark
able when the thickness pattern is co-configurational with the initial imperfection. However,
further investigation shows the effect of the axisymmetric thickness variation occurs at twice
the wave number of the classical buckling mode.

The present study examines in detail the buckling of the cylindrical shell with small
thickness variations. Our analysis is based on a system of linearized governing differential
equations of perfect shells with variable thickness. Asymptotic formulas in terms of e (e is
the thickness non-uniformity parameter), are derived by a hybrid perturbation-weighted
residuals method. In comparison with formulas (Koiter, 1992, 1993), which are linear in e,
these asymptotic formulas also contain the quadratic term, which results in a higher
accuracy. In addition to the analytic investigation, numerical study is also performed, and
results stemming from different methods were compared and discussed.
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2. BASIC EQUATIONS

The linear equations governing the axially compressed, non-uniform cylindrical shell
are as follows:

+ 6Eh (dh)2(02W +v02W)+ 3Eh
2

(02W +v02W)d2h
12(1-v2

) dx ox2 02y l2(1-v 2
) ox2 oy2 dx2

3Eh2 dh 03W 02W
+ 12(1 +v) dx oxoy2 + Po ox2 = 0, (2)

where Wand F represent the radial displacement (positive outward) and the Airy stress
function, respectively; v is Poisson's ratio, E the modulus of elasticity; Po denotes the
uniform axial load at the ends of the shell; hex) is the shell thickness, assumed here varying
only axisymmetrically

( 2PX)hex) = ho I-Gcos R ' (3)

where ho is the nominal thickness of the shell; Gand P are the non-dimensional parameters
indicating the magnitude and wave of the thickness variation.

By introducing the following non-dimensional parameters

(4)

the governing equations (1) and (2) can be rewritten into their non-dimensional form

2 2dH 03 W
+3(1- v )H <II (J~(JYJ2 = O. (6)
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Furthermore, in view of separation of variables, we seek solution of eqns (5) and (6)
in the following form

(7)

where n denotes the number of waves in the circumferential direction during buckling.
Equations (5) and (6) are thus transformed into ordinary differential equations

[
2 (nL)4 (dH)2 (nL)2 d

2H(nL)2Jl+ H - +2 - v - -H-v -
R de R de R

-6H2~~ (~Yw'+[H3(n:J -6H(~~YV(~Y

-3H2~~~ v(~YJw+ ::01" = O. (9)

In this study, three different methods are used to obtain the classical buckling load Pc/'
First, we evaluate the buckling load via an analytical technique, and then compare it with
the results of purely numerical calculations.

3. HYBRID PERTURBATION-WEIGHTED RESIDUALS METHOD

We assume w<e) in the form

(10)

where p is the number of half-waves along the shell length at buckling. A and Bare
undetermined constants. The above buckling pattern satisfies the boundary conditions of
the simple supports. The first term of the two-term approximation (10) is the exact buckling
mode for the shell of constant thickness, and the second term is introduced to account for
the thickness variation.

In order to solve the compatibility equation (8) for f, the perturbation procedure will
be employed here. To this end, 1 is expressed in terms of the thickness variation parameter
e as

(11)

Substituting eqn (11) into (8) and bearing in mind eqn (3), one has, after collecting
the like terms in e
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]<4) _ 2N'io' +/0 4C2Z 2W" + eU;(4) - 2N'i{' + NYI - 2cos 2P~/J4)

-4Psin 2P~/o"+4N2cos2P~/o'-4p2cos2P~/o'-4PN2sin2P~/o

- (2N4+4vP2N 2)cos2P~/o+ 12c2z2cos2P~w"] +e2[j;(4) -2N'1r

+ NY2+COS2 2P~fl4)- 2cos 2P~R4)+4Pcos 2P~ sin 2P~/o" -4Psin 2P~fl"

+( -2N2coS22P~+8P2 sin22P~+4p2COS2 2P~)/o'- (4p2_4N2) cos2PU{'

-4PN2cos 2P~ sin2P~fO'+4PN2sin2P~fl + (N4coS22P~

+ 8vN2p 2sin 22P~+4vP2N 2cos22P~)/o - (2N4+4P2N 2v) cos 2P~/l

- 12c2z 2cos22P?;w"] + ... = 0,

where

(12)

pL
P=R'

nL L
N=R' z= rr;-;:- c=J3(I-v2).

yRho'
(13)

From eqn (12), we obtain

(14)

2(/1) = 2cos2Pe.a4)+4Psin2P~/o"-4N2cos2P~N+4p2cos2p2?;fO'

-4PN2sin2pe/o + (2N4+4vP2N 2) cos2pe/o-12c2z 2cos2PN'" (15)

2(/2) = -cos22pefo(4) + 2 cos 2PUi(4) -4Pcos 2P?; sin 2pe/o" +4Psin 2pefl"

-( -2N2coS 22Pe+8p2sin22pr;+4p2cos22pe)/o' + (4p2-4N2) cos2PU{'

+4PN2cos2P?;sin2pe/o -4PN2sin 2P?;R -(N4cos22pe

+ 8vN2p 2sin22pe +4vP2N 2cos 2 2P?;)/o

+ (2N4+4P2N 2v) cos 2Pr;/1 + 12c2z2cos22Pr;w",

where the operator 2(') is defined as

2(/) = j< 4) - 2N'1" +NY-

(16)

(17)

Equations (14)-(16) can be solved analytically with the aid of the computerized sym
bolic algebra Mathematica (Wolfram, 1991) for 10, II and/2 to yield

10 = al cospe+a2cos3P~

II = a3cospe+a4cos3pe+ascos5P?;

12 = a6cospe+a7cos3pe+agcos5pe+a9cos7pe, (18)

where aJ, a2, ... , a9 are coefficients depending on A and B, and are given in the Appendix.
Applying the weighted residuals method, namely, in our case the Boobnov-Galerkin

procedure, to the equilibrium equation (9), we arrive at
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fl
/
2 { dH [ (dH)2 d2HJH\-V(4)+6H2-w"'+ -2H3N2+4~cZ2+6H - +3H2--2 W"

-1/2 d~ d~ d~

801

_6H2dH N 2w'+ [H3N4_6H(dH)\N2_3H2d2H VN2JW
d~ d~ d~2

+Z2(fO' +ef{'+e~2+ .. ')}{C::S::~}d~= 0, (19)

where ~ is the buckling load reduction factor due to the thickness variation defined as

Po
~---

- PO,cons!'

Eh 2
P _ 0

O,cons! - RJ3(1- v2 )
(20)

and PO,cons! is the classical buckling load of the uniform shell with constant thickness ho.

Case A
We evaluate the classical buckling load corresponding to the buckling mode at the top

of the Koiter semi-circle (Koiter, 1963). In this case, the buckling mode has the same wave
numbers in both the axial and circumferential directions, and the buckling wave numbers
P and n can be expressed as follows:

Po
p=n=2'

2 R
Po = 2c h

o
' (21)

then the thickness variation pattern (3) becomes

(
Pox)h = ho l-ecos R . (22)

With this assumption, substituting eqns (II) and (18) into (I9) and making some
algebraic manipulations leads, when retaining only the terms up to e2

, to the following
eigenvalue problem

(23)

where [C(e, ~)] is the coefficient matrix containing the thickness variation parameter e and
the buckling load reduction factor~. The elements of matrix [C(e, ~)] are as follows:

4[ 58-4v+ 13v
2 2J

CII = P 4-4~-2ev+ 25 e

C - C - 4[_ 336+66v 66+300v+9v
22J

12 - 21 - P 25 e+ 50 e

_ 4[1412-900~ 1,571,01O-11,988v+ 1377v2 2J
Cn - P 25 + 21,125 e . (24)

The requirement of vanishing of the determinant of matrix [C(e, ~)] results in the
following equation, when the terms higher than e2 are neglected
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144 2 ( 9248 72 -8,048,400+ 169,632v-400,968v2 2)
IX+-~+ ve+ 21125 eIX,

5648 2824 1,737,952v-478,708v2
2 (25)

+~-~ve- 21125 e =0.,

From eqn (25) an asymptotic expression can be obtained for the buckling load
reduction factor due to the thickness variation

. 1 (832+464v-23v 2
) 2

IX=I--~- e
2 512

which coincides with the formula (Koiter, 1992)

IX = I-1v8

if the quadratic term in (26) is dropped.

CaseB
We now investigate the axisymmetric buckling mode, i.e.

2 R
n = 0, P = Po, Po = 2c h

o

then the thickness variation pattern (3) is

(26)

(27)

(28)

(29)

For this case, we obtain, by retaining the terms up to e2
, the following asymptotic

expression for the buckling load reduction factor

25 2
IX = l-e--8

32

which again coincides with Koiter's linear formula (Koiter, 1993)

IX = 1-8

if the quadratic term is ignored.

(30)

(31)

4. SOLUTION BY FINITE DIFFERENCE METHOD

The finite difference method, which is particularly useful for the buckling problems of
structures of complicated geometry or varying flexural rigidity, is used here. This method
is based on the use of approximate algebraic expressions for the derivatives of unknown
variables which appear in the fundamental governing equations. The following expressions
of the central difference method are used to approximate the corresponding derivatives

(32)

where d is the distance between neighbouring nodal points.
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Using (32), the differential equations (8) and (9) are approximated by the finite
difference equations

(33)

where

G li = [H(eiW, G2i = -2H(OH'(ei)

G3i = -2N2[H(O]2+2[H'(eiW-H(eJH"(eJ

G4i = 3N2H(OH'(O,

GSi = H 2N4+2vN2[H'(ei)F-vN2H(ei)H"(ei)

G6i = -12(l-v2)z2[H(ei)F, G7i = Z2

GSi = [H(OP, G9i = 6[H(eiWH'(O

G10i = -2N2H 3+4a:cz2+6H(O[H'(O]2+3[H(eiWH"(ei)

G1li = -6N2[H(eiWH'(ei),

Gl2i = N 4[H«()F-6vN2H[H'(eJF-3vN2[H(eiW, (35)

Here the derivatives H'(ei) and H"(ei) are evaluated analytically. By subdividing the
shell length domain ( - Lj2, Lj2) into M equal segments and applying eqns (33) and (34)
to each nodal point, points near the ends of the shell are influenced by the boundary
conditions. Here we consider the case of simply-supported boundary conditions, namely

Wo w'~ = 10 =I~' = WM = w~ = 1M = l':.t = 0,

or in view of eqn (32)

Thus, we establish a system of simultaneous algebraic equations,

[C(C;i,a)](2M+2)x(2M+2){<5h2M+2)x(2M+2) = 0,

(36)

(37)

(38)

where [qc;i' a)) is the coefficient matrix, whose elements depend on the shell geometry,
nodal point coordinates, elastic constants as well as the unknown buckling load reduction
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Table I. Comparison of buckling loads derived via different methods for Case A (v = 0.3)

Asymptotic formula

Koiter's formula,
eqn (27)

Second-order
approximation,

eqn (26) Shooting method Finite difference

0.0
0.01
0.05
0.10
0.15

1.0
0.999
0.993
0.985
0.975

1.0
0.998
0.988
0.966
0.935

1.0
0.999
0.989
0.967
0.939

1.0
0.998
0.988
0.966
0.938

factor IX {<5} represents a column vector containing the unknown values of functions of w
andfat the nodal points.

Setting the determinant of [C(~i' IX)] equal to zero gives the approximate value for the
classical buckling load reduction factor IX or the classical buckling load which improves in
accuracy with an increase in the number of subdivided segments. In the implementation of
this process, the classical buckling load reduction rate IX is sought through iterations.

5. SOLUTION BY GODUNOV-CONTE SHOOTING METHOD

The differential equations (8) and (9), together with the simply-supported boundary
conditions (J = 1" = w= w" = 0 at the ends of the shell), can be solved for the classical
buckling load by use of the shooting method. However, as pointed out by Grigolyuk et ai.
(1971), in the problem ofbuckling ofcylindrical shells, when the non-dimensional parameter
L(l_V2)025(Rh)-O.5 exceeds ten, the coefficient matrix of the algebraic equations, from
which the missing initial conditions are solved, becomes too ill-conditioned, which may
lead to the loss of accuracy or even completely incorrect results. In the present study the
modified version of the shooting method, known as the Godunov-Conte method (Elishakoff
and Charmats, 1977), is employed. It utilizes the Gram-Schmidt orthogonalization pro
cedure during the integration steps to prevent the ill-conditioning problem so that more
accurate results could be obtained than those furnished by the ordinary shooting method.

6. NUMERICAL RESULTS AND DISCUSSION

The results for the classical buckling load reduction IX from the above three methods
are given in the Tables 1 and 2 for different values of the thickness variation parameter B.

A very good match between the results from different methods is shown up to the
value B = 0.05. The increasingly larger difference is observed between the results of the first
order approximation given by eqn (27) [or eqn (31)] and those of numerical solutions as B

becomes larger. While the first-order asymptotic approximate formula may not be
sufficiently accurate as Breaches 0.1, the second-order asymptotic formula (26) [or (30)]
retains a good accuracy even for B as large as 0.15. Thus, owing to their higher accuracy,
eqns (26) and (30) can be used to obtain a sufficiently good estimate of the buckling load
reduction factor due to the thickness variation.

Table 2. Comparison of buckling loads derived via different methods for Case B (v = 0.3)

Asymptotic formula

0.0
0.01
0.05
0.10
0.15

Koiter's formula
eqn (31)

1.0
0.990
0.950
0.900
0.850

Second-order
approximation,

eqn (30)

1.0
0.990
0.948
0.892
0.832

Shooting method

1.0
0.990
0.949
0.895
0.837

Finite difference

1.0
0.990
0.948
0.894
0.836



Buckling of an axially compressed cylindrical shell of variable thickness S05

The above results also show that the effect of certain types of thickness variation on
buckling load deserves special attention. Although the thickness variation pattern akin to
the classical buckling mode (Case A) may have a remarkable effect on the classical buckling
load (the classical buckling load is decreased by over 6% when e = 0.15), the most detri
mental effect of thickness variation occurs when the wave number of the axisymmetric
thickness variation is twice that of the classical buckling mode (Case B). In this situation,
even if the amplitude of the thickness variation is as small as 0.1, the thickness variation
reduces the buckling load by 10% from its counterpart of the shell with constant thickness.
When e = 0.15, the classical buckling load is decreased by over 15%. Thus, in the absence
of initial geometric imperfection, this particular kind of thickness variation may constitute
the most important factor in the buckling load reduction. The study of the effect ofthickness
variation in shells made of composite materials is underway and will be reported elsewhere.
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APPENDIX

4c'z'P' 36c'z'P'
a=- A a=- B

, (P'+N')'" (9P'+N')'

I
a3 = , " [(a, +a,)N4+ (4a, +24a,)N'P' + (a, + 117a,)p4+ (2va, +2va,)N'P,+ (6A + 54B)c'P'z,1

(N +P)

a ,N4- 3a, p 4+2va, N' P' +6c' P'z'A
a -
4- (N'+9P')'

a,N4+ 12a,N'P' +9a,p4+2va,N'P, +54c'P'z'B
a -
,- (N'+25P')'

I . 4 4
a6 = - , ,,[(2a,+a,-4a3-4a4)N + (-22a,+225a,-4a3-46Sa4)P

4(N +P )
+ (4a, +30a,-16a,-96a4+24va, -4va, -Sva4)N'P'+ (24A + 10SB)c'P'z'l

I 4 4a7 = - , , ,[(a, +2a,-4a3-4a5)N + (9a,- 54a, + l2a, - 3300a,)P
4(N +9P ) .

+ (6a, +36a,-240a, -4va, +24va,-Sva3-Sva,)N'P'+ (12A +216B)c'P'z'J

a8 = - ,I ,,[(a,-4a4)N4+(a,-36a4)p4-(2a,+4Sa4+4va,+Sva4)N'P'+12c'P'z'AJ
4(N +25P )

a9= - , I ,,[(a,-4a,)N4+(9a,-1300a,)p4+(6a,-160a,-4va,-Sva,)N'P'+lOSc'P'z'BJ.
4(N +49P )
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